Devenir des protéines dans un système modèle de digestion simulée assisté par spectrométrie de masse

Institut Charles VIOLLETTE:
1: Equipe ProBioGEM, Université Lille1, Villeneuve d’Ascq et
2: Equipe QSA, Université d’Artois, Lens.
3: CUMA, Faculté de Pharmacie, Lille.
4: Inserm U1011, « Récepteurs nucléaires, maladies cardiovasculaires et diabète », Lille

Christophe FLAHAUT², Juliette CARON¹, Dorothée DOMENGER¹, Mostafa KOUACH³, Véronique TOUCHE⁴, Sophie LESTAVEL⁴, Jean-François GOOSSENS³, Pascal DHULSTER¹, Rozenn RAVALLEC¹ et Benoit CUDENNEC¹
Introduction – Background

- Gastrointestinal digestion

“Shall I refuse my dinner because I do not fully understand the process of digestion?”

Oliver Heaviside (1850-1925)

- Partial hydrolysis by pepsin (*Stomach*)
- Proteases (trypsin, chymotrypsin, carboxypeptidases) and microorganisms peptidases (*small intestine lumen*)
- Brush border membrane peptidase (*microvilli of epithelial cells*)

Free amino acids

Various molecular weight peptides with potential bioactivities

Peptidome
Sources and roles of bioactive peptides

Sources of bioactive peptides

Animals
All proteins
Plants

→ Cow-milk proteins

benefit / harmful
Hemoglobin (Hb) as a potential source of bioactive peptides?

Hb (α2/β2): a model protein

Meat production food chain

Farm → Transport → Lairage → Slaughter house

Slaughter / bleeding → Removal of hooves → ...

Slaughterhouse blood

30% sold

70% discarded

20% of proteins discarded

Source: NCBI

Objectives

1. Development of an *in vitro* human digestion model to study protein digestion
2. Characterization of peptidomes (GI digestion-derived peptides)

1. Protein digestion and energy homeostasis: impact of generated peptides on intestinal hormones

Bovine hemoglobin
Source: NCBI
In vitro GI digestion

- **No heating over 37°C**

- **Mouth**
 - $t = 5 \text{ min}$
 - pH $= 6.5$

- **Stomach**
 - $t = 30 \text{ min}$
 - pH $= 1 - 2$

- **Small intestine**
 - $t = 15 - 60 \text{ min}$
 - pH $= 6.5 - 6.8$

- **Stop digestion (100°C, 15 min)**

Analytical strategy

Separation method

- **C18 RP-HPLC**
 - C18 LiChroCART 250-4, LiChrospher 100 column (Merck KGaA, Darmstadt, Germany)

- **C18 NanoLC**
 - Acclaim Pepmap RSLC, 75 μm ID × 50 cm, Thermo Scientific

Mass spectrometry/Bioinformatics

- **MALDI-MS/MS**
 - AutoFlex speed, Bruker

- **ESI-HR-MS/MS**
 - Thermo Scientific Orbitrap Elite mass spectrometer

Additional Notes

- **X 3**

Hemoglobin (Hb): a highly digestible protein

- **Results**

- Hemoglobin (Hb) is highly digestible.

- SDS-PAGE: 16.5% SDS-PAGE indicates the presence of hemoglobin at 14.6 kDa, 6.5 kDa, and 3 kDa.

- SEC-chromatography shows two peaks after 2 hours of digestion:
 - 2 hour gastric digestion
 - 2 hour intestinal digestion

- Normal bore C18-HPLC profiles:
 - Undigested Hb
 - Gastric digestion
 - Intestinal digestion
- Normal bore C18 HPLC-MALDI-MS (off-line)

Digestome samples X3

C18-HPLC separation X3

Manual collect (26 fractions) X3

Automatic MALDI-MS and MS/MS X3

Gathering of all XML files

Combined XML file + renumbering of detected peaks

Enzyme: none
Missed cleavage: 36

Hb-A and Hb-B sequences

Peptides Matching
Peptide heterogeneity (HPLC-MALDI-MS)

HB alpha chain (Hb_A)
- 317 matching peptides (based on MS-data)
 → sequence coverage (MS) = 100 %

HB beta chain (Hb_B)
- 339 matching peptides (based on MS-data)
 → sequence coverage (MS) = 100 %

- 26 peptides unambiguously identified by MS/MS
 → sequence coverage (MS/MS) = 66 %

Digestion resistant sequences?

Ion parent error tolerance 30 ppm and fragment mass error tolerance 0.5 Da.
Results - High resolution approach

- **nanoLC-ESI-HR-MS/MS**

 Digestome samples → **zip-tip** → **Acclaim Pepmap RSLC, 75 μm ID × 50 cm on Proxeon Easy-nLC system**

 Orbitrap Elite mass spectrometer

 MS param.
 - data-dependent mode
 - RP = 70,000 (FWHM)
 - 300–1600 m/z → 3E6 ions

 MS/MS param.
 - 500 counts
 - isolation window of 4 amu
 - normalized collision energy of 35%.
 - 5000 ions and max. inj. time = 60 ms
 - 300–2000 m/z.

Database:
- bovine proteins

Peptide identifications

- **Hb_A**
 - 306 peptides unambiguously identified by MS/MS
 - sequence coverage (MS/MS) = 100%
 - False discovery rate (FDR) = 0%

- **Hb_B**
 - 420 peptides unambiguously identified by MS/MS
 - sequence coverage (MS/MS) = 100%

Total:
- 726 peptides

- e.g. : intestinal fraction
- Peptide heterogeneity (nanoLC-ESI-HR-MS/MS)

- Ion parent error tolerance 10 ppm and fragment mass error tolerance 0.2 Da.

Results - High resolution approach

GI digestion-resistant sequences

e.g. : intestinal fraction
Results - The GI digestion-resistant sequences

Hb_A – intestinal maps

Hb_B – intestinal maps

HB-A: heat map of AA occurrence frequency

HB-B: heat map of AA occurrence frequency

K/Preferential cleavage site for trypsin
Objectives

1. Development of an *in vitro* human digestion model to study protein digestion
 - Characterization of peptidomes (GI digestion-derived peptides)

2. Protein digestion and energy homeostasis: impact of generated peptides on intestinal hormones

Bovine hemoglobin

Source: NCBI
● Energy Homeostasis:

Energy expenditure vs caloric intake: need to ensure a balance

● Regulation mechanisms

Long term - adiposity signal: To maintain body weight « adiposity negative feedback » (Leptin)

Short term - satiation signal: (gut hormones, gastric distension)
Background - Intestinal hormones

- **Cholecystokinin (CCK)**

 Produced by **I cells** (duodenum) in response to lipids and **proteins**.
 Promotes **satiation**: increase gastric secretion, decrease gastric emptying, induces satiety feeling by vagal afferents.

- **Glucagon-like Peptide 1 (GLP-1)**

 Produced by **L cells** (ileum and colon)
 One of the proglucagon products
 Promotes satiation by various pathways
 Incretin: stimulates glucose-dependant insulin secretion

 GLP-1 inactivation by dipeptidyl peptidase IV (DPP-IV). Only 10-20% plasmatic GLP-1 remains
DPP-IV – GLP-1:

Inhibiting DPP-IV extends GLP-1 incretin activity

New target for type-2 diabetes therapy

Ex: Gliptins (e.g. Vildagliptin and saxagliptin)

- Dipeptidyl peptidase 4 (DPP-IV)

DPP-IV rapidly degrades GLP-1 → decrease in plasma

DPP-IV inhibition → indirect increase of GLP-1 activity
→ indirect impact on food intake

Dietary proteins: promising sources as “natural”

DPP-IV inhibitors
In vitro digestion

- Mouth
 - $t = 5\ \text{min}$
 - $pH = 6.5$
- Stomach
 - $t = 30\ \text{min}$
 - $p = 2 - 3$
- Small intestine
 - $t = 15 - 60\ \text{min}$
 - $pH = 6.5 - 6.8$

Bioactivity assays
- Hormone secretion & gene expression
- DPPIV activity

Bioactive sequence identification

Experimental design
Results - Intestinal hormone regulation

Hormones secretion

STC-1
Enteroendocrine cells

CCK &
GLP-1
secretion
RIA detection

Significant increase of both CCK and GLP-1 secretion in presence of intestinal samples

→ Beneficial effect of intestinal enzymes on peptide potential bioactivity
Regulation of hormone gene expression

Intestinal hydrolysate (I4) significantly induces both CCK and proglucagon gene expression
Results - DPP-IV activity inhibition

- DPP-IV activity assay

Intestinal DPP-IV inhibition activity is enhanced during GI digestion

Final intestinal hydrolysate: best bioactivity like for intestinal hormone

Physiological relevance, same peptides involved?

Need to identify resistant active sequences
Results – peptide purification

- **Size exclusion chromatography**

- **CCK and GLP-1 different peptide groups involved**

 ![SEC profile](image)

 - 4h digestion
 - intestinal digest

- **DPP-IV and GLP-1**
 - Same peptides involved?
 - MW range 500 – 1500 Da

- **MW < 1000 Da**
 - MW > 500 Da

- **GLP-1 secretion**
 - MW > 500 Da

- **DPP-IV inhibition**
 - MW range 500 – 1500 Da

- **CCK secretion**
 - MW < 1000 Da

<table>
<thead>
<tr>
<th>Control</th>
<th>1A 1%</th>
<th>1A 0.5%</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCK (pM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absorbance at 214 nm (mAU)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 bioactivities
C18 RP-HPLC

Results – peptide purification

Peptides contained in F4 both stimulate GLP-1 secretion and inhibit DPP-IV activity
Results – peptide purification

- **Peptide identification and passage across intestinal wall**

![Diagram showing peptide purification process]

LC-MSMS

- **60 peptides**
- **LC-MSMS**
- **F4 intestinal sub-fraction**
- **Caco-2 cell monolayer**
- **Apical**
- **Basolateral**
- **18 peptides**

Table: Protein Sequence Mass (Da)

<table>
<thead>
<tr>
<th>Protein</th>
<th>Sequence</th>
<th>Mass (Da)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBA_BOVIN</td>
<td>ADKGNV</td>
<td>602.3024</td>
</tr>
<tr>
<td>HBA_BOVIN</td>
<td>ADKGNVK</td>
<td>730.3973</td>
</tr>
<tr>
<td>HBA_BOVIN</td>
<td>SAADKGNV</td>
<td>760.3715</td>
</tr>
<tr>
<td>HBA_BOVIN</td>
<td>SAADKGNVK</td>
<td>959.5035</td>
</tr>
<tr>
<td>HBA_BOVIN</td>
<td>DLHAK</td>
<td>591.28</td>
</tr>
<tr>
<td>HBA_BOVIN</td>
<td>SDLHAK</td>
<td>806.4035</td>
</tr>
<tr>
<td>HBB_BOVIN</td>
<td>SDLHAK</td>
<td>678.3085</td>
</tr>
<tr>
<td>HBA_BOVIN</td>
<td>DLSHGSAQ</td>
<td>813.3617</td>
</tr>
<tr>
<td>HBA_BOVIN</td>
<td>KAAVT</td>
<td>488.2958</td>
</tr>
<tr>
<td>HBA_BOVIN</td>
<td>MNNPK</td>
<td>602.2846</td>
</tr>
<tr>
<td>HBA_BOVIN</td>
<td>SLDK</td>
<td>461.24</td>
</tr>
<tr>
<td>HBA_BOVIN</td>
<td>VAAA</td>
<td>330.19</td>
</tr>
<tr>
<td>HBA_BOVIN</td>
<td>VDPVN</td>
<td>542.27</td>
</tr>
<tr>
<td>HBA_BOVIN</td>
<td>VGGHAAE</td>
<td>639.2976</td>
</tr>
<tr>
<td>HBA_BOVIN</td>
<td>YGAE</td>
<td>438.175</td>
</tr>
<tr>
<td>HBA_BOVIN</td>
<td>YGAEAA</td>
<td>509.2122</td>
</tr>
<tr>
<td>HBB_BOVIN</td>
<td>ANVST</td>
<td>490.2387</td>
</tr>
<tr>
<td>HBB_BOVIN</td>
<td>LTAAEEK</td>
<td>689.3596</td>
</tr>
</tbody>
</table>
Conclusion and Perspectives

- **GLP-1 / DPP4**

 - Significant increase of both GLP-1 secretion and proglucagon gene expression
 - Inhibition of DPP-IV activity
 - Extending GLP-1 actions (food intake regulation and incretin effect)
Hemoglobin peptidomes

- More than **700 sequences unambiguously identified** in gastric and intestinal peptidomes
- **Specific cleavage sites** identified
- Resistant sequences identified – **recurrent patterns**

- These recurring patterns were made of amino acids that **could be potential preferential cleavage sites** with regard to enzyme specificity.
- **No particular link** between enzyme resistivity and isoelectric point or hydrophobicity index has been found out so far.
- **Peptide conformations** could prevent or slower enzyme activity. **Secondary structure** implicated.

- New tool for screening dietary protein bioactivities

Proteases and peptidases (GI environnement)

Emergence of resistant bioactive sequences

Peptidofoodomics

New tool for the study of this complexe phenomenon

New tool for screening dietary protein bioactivities
Thank you for your attention!