

Continuous production of pseudo-ceramides catalyzed by immobilized Candida antarctica lipase B

(Novozym[®] 435) in a packed-bed bioreactor

Florian Le Joubioux^a, Nicolas Bridiau^b, Marianne Graber^b, Thierry Maugard^b

80

60

20

^aVALBIOTIS - 1 rue de la Trinquette, 17000 La Rochelle, France ^bUniversité de La Rochelle - LIENSs, UMR 7266 - Avenue Michel Crépeau, 17042 La Rochelle, France E-mails: florian.lejoubioux@valbiotis.com; nicolas.bridiau@univ-lr.fr; thierry.maugard@univ-lr.fr

CONTEXT AND OBJECTIVES: Ceramides are spingolipid compounds that are very attractive as active components in both the pharmaceutical and the cosmetic industries. In this work, the synthesis of ceramide analogs, the so-called pseudo-ceramides, was carried out using for the first time a two-step continuous enzymatic process with immobilized Candida antarctica lipase B (Novozym[®] 435) in a packed-bed bioreactor [1]. The first step involved the N-acylation of 3-amino-1,2-propanediol using stearic acid as the first acyl donor (Fig. 1; step 1). This was followed by the selective O-acylation of the product synthesized in the first step, with myristic acid, to produce a N,O-diacyl 3-amino-1,2-propanediol-type pseudo-ceramide (Fig. 1; step 2).

Optimization of the process in a laboratory scale bioreactor:

Example of pseudo-ceramide structure:

<u>Two-step process for the selective enzymatic synthesis of 1-0,3-N-diacyl 3-amino-1,2-propanediol-</u> type pseudo-ceramides catalyzed by Novozym[®] 435 in a packed-bed bioreactor (Fig 1):

laboratory scale packed-bed bioreactor system.

Finally, productions were performed on the two steps under optimal experimental conditions (Table 1): Table 1: Yields and Production of the two steps under optimal experimental parameters

Parameters	feed flow rate (µl.min ⁻¹)	Novozym® 435 (mg)	Acyl donor (mM)	Acyl acceptor (mM)	Column (Lxd, mm x mm)	Yield (%)	Production (g.h ⁻¹ •g _{biocatalyst} ⁻¹
Step 1	500	875	100	100	145x5	92	1,1
Step 2	250	875	150	50	145x5	54	0,3

Final results of the continuous production of pseudo-ceramide after the two steps process:

- **Good performance: 50%**
- **Good productivity:** ≈0,3 g.h⁻¹ .g_{biocatalyst}⁻¹

Evaluation of parameters for scale up of the process:

Conclusion: In this work, we developed a new efficient continuous process for the selective Novozym[®] 435-catalyzed synthesis of pseudo-ceramides, conducted in a packed-bed bioreactor. The pseudoceramide was produced at a satisfying yield of 50% and a production rate of 0,3 g h⁻¹ g_{biocatalyst}⁻¹ (120 g in 3 weeks under our optimal experimental conditions). Moreover, our results are encouraging in terms of the future development of this process for production of various pseudo-ceramides on an industrial scale: low cost in terms of biocatalyst, similar synthesis yields with various fatty acids used as acyl donors and optimization of the reactor design.

[1] F. Le Joubioux, N. Bridiau, M. Sanekli, M. Graber, T. Maugard, J. Mol. Catal. B Enzym. (2014) 109;143–153. [2] F. Le Joubioux, N. Bridiau, Y. Ben Henda, O. Achour, M. Graber, T. Maugard, J. Mol. Catal. B Enzym. (2013) 95;99–110.