

The lipases from *Yarrowia lipolytica*: genetics, production, regulation, biochemical characterization and biotechnological applications.

Prof. P. FICKERS

Microbial Processes and Interactions (MiPI) University of Liège - Gembloux Agro-Bio Tech

pfickers@ulg.ac.be

The lipases from *Y. lipolytica*

- From the genome sequence, 16 lipases encoding gene have been highlighted.
- \succ Lip2p is the main extracellular lipase.
- LIP2 code for a 334 aa precursor protein, processed by Kex2-like protease.
- Lip2p possess a pre-signal sequence (SS); a X-Ala, X-Pro motif (DP) and a pro-region with Lys-Arg cleavage site.

Pignede et al, 2000, Appli. Env. Microbiol.

The lipase lip2 : structure

- Lip2 is a lipase sensus stricto: GH<u>S</u>LGG/AA motif (Pignede et al 2000)
- Lip2 is a N-glycosylated protein: Man₈GlcNac₂ at N¹¹³IS and Man₉GlcNAc₂ at N¹³⁴NT (Jolivet et al 2007)
- Cristalogarphic structure has been solved at 1,7 A (Bordes et al 2010)

The lipase lip2 is a secreted protein

Lip2 is a secreted protein. However, with an uncomon secretion kinetic as evidenced by western blot experiments

10h			18h		4	0h	
СМ	S	С	М	S	C	М	S

Fig. 5 Western blot analysis of the *Yarrowia lipolytica* JMY1098 culture in YNBO after 10, 18 and 40 h of growth. S, 200 μ l of culture supernatant; C, cytosolic fraction from 0.5 mg of cell extract; M, membrane fraction from 0.5 mg of cell extract

- > C : cytosolic location
- > M : membrane location
- > S : supernatant location

During cell growth, lip2 remains cell-associated before being released in the medium during the stationery phase

- LIP2 regulation was investigated using a pLIP2-LacZ reporter gene and β-galactosidase measurments
- LIP2 expression is induced by :
 - Oleic acid

Fig. 4 Time course of lipolytic productivity (a), β -galactosidase activity (b) and oleic acid concentration (c) obtained for JMY775 growing in YNBO containing 0.5% of tryptone N1 and 0.5% (\blacklozenge), 1% (\blacksquare) and 3% (\blacktriangle) of oleic acid. Results are mean values of three independent experiments. Standard deviation were <10% of average value

- > LIP2 expression is **induced** by :
 - > Organic nitrogen

Nitrogen source	Biomass (mg DW ml ⁻¹)	pU (U mg ⁻¹)
Casamino acids	3.2 ± 0.3	6.6 ± 2.3
Peptone ET1	4·5 ± 0·2	109.0 ± 5.3
Peptone N1	3.2 ± 0.5	77.1 ± 3.3
Peptone PLUS	2.4 ± 0.6	96·8 ± 2·7
Tryptone N1	2.3 ± 0.5	484·7 ± 59·1
Urea	2.7 ± 0.2	59·1 ± 2·7
Yeast extract	2.5 ± 0.3	38.1 ± 10.1
NH ₄ Cl	2.0 ± 0.1	1.6 ± 0.1
$(NH_4)_2SO_4$	1.9 ± 0.1	1.7 ± 0.5
None	1.8 ± 0.1	2.9 ± 0.1

DW, dry weight; pU, lipolytic productivity.

Mean and standard deviations were calculated on four replicates.

- > LIP2 expression is **induced** by :
 - Organic nitrogen (casein tryptone)

0% (♦), 0.5% (■) and 1% (▲) of tryptone N1

Fickers et al, 2004

> LIP2 expression is **repressed** by :

Glycerol

	Lipase p	productivity	
Strain	YNBG (glycerol) pU (U ml ⁻¹ h ⁻¹ A_{600}^{-1})		Phase I : glycerol
	Phase I	Phase II	Phase II : glycerol starvation
CBS6303	0.01	0.02 ^b	

A very low level of lipase production could be observed even after glycerol depletion in the medium

- > LIP2 expression is **repressed** by :
 - Glucose

	Lipase productivity		
Strain	YNBD (g pU (U ml ⁻¹ h	lucose) $(^{-1} A_{600}^{-1})$	
	Phase I	Phase II	
CBS6303	0.1	0.5 ^b	

Phase I : glucose

Phase II : glucose starvation

Lipase production increases after glucose depletion

LIP2 repression by glucose : further investigations with regulatory mutants

	Lipase p	roductivity	
Strain	YNBD (glucose) pU (U ml ⁻¹ h ⁻¹ A_{600}^{-1})		Phase I : glucose Phase II : glucose starvation
	Phase I	Phase II	LgX64.81 : NTG mutagenesis
CBS6303	0.1	0.5 ^b	Regulatory mutant
LgX64.81	5.6	6.2 ^a	

High level of lipase production in the presence of glucose

- Mutant LgX64.81 presents a growth defect on glucose medium Vs WT
- LgX64.81 presents a lower glucose uptake capacity

Table 2. Determination of the doubling time (g) and sugar consumption rate (R_s) for *Y. lipolytica* CBS6303 wild-type and LgX6481 mutant growing in glucose (YNBD) and fructose (YNBF) media. Values are the mean and standard deviation of three separate experiments

Strain	Glucose		Fructose	
	g	R _s	G	R _s
	(min)	(g/(LhmgDW)	(min)	(g/(LhmgDW))
CBS6303	171 ± 7	0.18 ± 0.04	182 ± 6	0.28 ± 0.02
LgX64.81	322 ± 12	0.09 ± 0.02	215 ± 8	0,18 ± 0.07

- > This lower uptake capacity is due to a **lower hexokinase activity** of LgX64.81
- ➤ Is glucose transport involved in LIP2 regulation ?

Table 3. Determination of hexokinase activity during growth of *Y*. *lipolytica* strains CBS6303 and LgX64.81 in YNBD medium. Hexokinase activity was assayed with 20 mM fructose. Values are the mean and standard deviation of three separate experiments. Hexokinase activity was expressed as mU per milligram cells (DW)

Time (h)	CBS6303	LgX64.81	
16	1.10 ± 0.01	0.82 ± 0.01	
24	1.11 ± 0.03	0.87 ± 0.04	
44	1.07 ± 0.02	0.86 ± 0.03	

> Over-expression of hexokinase *HXK1* in LgX64.81 restore glucose repression

_	Hexokinase (mU /mg)	Lipase productivity (U /mL mg DW)	β-galactosidase activity (Miller units)
WT	1.10 ± 0.10	1.0 ± 0.1	36 ± 4
LgX64.81	0.80 ± 0.05	7.4 ± 0.1	612 ± 14
LgX64.81 / HXK1	2.40 ± 0.40	1.3 ± 0.2	168 ± 23

Production in bioreactor with non-GMO strain

Culture in 20 L bioreactor of LgX64.81

Batch 1000 U/ml

Fed batch with full medium 2000 U/ml

Fed batch with glucose/oleic acid 3000 U/ml

Production in bioreactor with non-GMO strain

Culture in 2.000 L bioreactor in an olive oil based medium of LgX64.81

Fig. 1. Cell growth and lipase production by *Y. lipolytica* LgX64.81 during culture in 2000 L bioreactor. Cell growth (\Box) is expressed in 10⁷ cells mL⁻¹ and lipolytic activity (\bullet) in UmL⁻¹. Dissolved oxygen (\blacktriangle) and glucose concentration (\blacksquare) were multiplied by a factor of 20 and 100, respectively.

DSP with non-GMO strain

> Lip2 downstream process is a three steps procedure based on filtration and ultrafiltration

Evolution of the lipase activity during the down-stream process				
Down-stream step	Volume (1)	D.W. (%)	Lipase activity UgD.W. ⁻¹	
Culture broth	1100	-	ND	
Centrifugation	950	7.6	12828	
Plate filtration	950	5.6	13160	
Ultra-filtration	75	9.0	108166	

Table 1 Evolution of the lipase activity during the down-stream process

Yields in lipase activity were calculated based on the activity expressed in $U g D.W.^{-1}$. D.W., dry weight.

Fickers et al, 2006

DSP with non-GMO strain

- Lip2 dehydration by spray-drying to obtain lipase powder
- Formulation : milk powder and gum arabic

Additives Yield (%) Before After 6% MP 12898 9862 76 12% MP 8687 7522 86 12% MP+3% GA 7857 6667 84 12% MP+6% GA 6751 5572 82

Table 3 Effect of additives on the lipase activity before and after spray-drying

Lipase activities, expressed in U mL⁻¹, are means of two experiments. MP, milk powder; GA, gum arabic. Fickers et al, 2006

DSP with non-GMO strain

Lip2 powder is very stable

Fig. 2. Temperature and pH stability of *Y. lipolytica* extracellular lipase after dehydration by spray drying (grey) and in the culture supernatant (white). Relative enzyme activities are means of two experiments. Fickers et al, 2006

Production in bioreactor with GMO strain

- Lgx64.81 derivative with pLIP2-LIP2
- Tryptone and oleic acid fed-batch culture in 20L bioreactor

Fig. 4. Lipase production by JMY1105 during fed-batch fermentation in a 201 bioreactor. Cell growth (solid square) is expressed in mg DW 1^{-1} and lipolytic activity (solid circle) in U^{-1} . Tryptone (1%) and olive oil (2%) were added after ~45 h (indicated by the arrow) when cells entered the stationary phase.

Biotechnological applications

> Waste treatment : oil mill waste water

Table 1

Application of Yarrowia lipolytica in the treatment of oil mill effluent.

Strain	Type of waste	Reduction	Lipase (U/L)
ATCC 20255	$OMW + (NH_4)_2 SO_4 + YE$	80% COD	770 cell free 980 cell bound
62 different strains	OMW (diluted or not)	1.5 to 41% COD 0 to 18% polyphenol	35 to 2315
ACA-DC 50109	OMW + glucose	15% polyphenol	
W29	$OMW + (NH_4)_2 SO_4 + YE$	61 to 79% COD	49 to 78
		57 to 72% polyphenol	
IMUFRT 50682	$OMW + (NH_4)_2 SO_4 + YE$	75 to 80% COD	16 to 27
		39 to 68% polyphenol	
W29	Different crude OMW	21 to 36% COD	320 to 451
		30% polyphenol	
CBS 2073	Different crude OMW	23 to 51% COD	828 to 1041
		25% polyphenol	
IMUFRJ 50682	Different crude OMW	23 to 50% COD	317 to 533
		20% polyphenol	
W29 immobilized	Oil waste water	82% COD	n.d.
W29	Oil waste water	67% COD	n.d.
NCIM 3589	POME	97% COD	n.d.
		80% BOD	

n.d.: not determined; YE: yeast extract; CA: citric acid; OMW: olive mill waste water; POME: palm oil mill effluent.

Biotechnological applications

> Fine chemistry : drug synthesis

Fig. 1 Transesterification reaction between 2-halogeno-carboxylic acids and 1-octanol catalyzed by the extracellular lipase Lip2p from *Y. lipolytica* in *n*-octane

Biotechnological applications

Fine chemistry : synthesis of polyether

Fig. 2 Scheme for the polyether synthesis by the so-called ring-opening polymerization (ROP)

Fickers et al, 2013

Traditional applications

- ➢ Food applications :
 - Cheese ripening and maturation
 - Flavor development in dry fermented sausage

Thank you for your attention