

Conversion of organic side-streams into multiple marketable products – BBI-InDIRECT project

L. Bastiaens, J. Roels, M. Lopez, M. Uyttebroek, S. Sforza, G. Bruggeman

Insectinov 2, Paris, 10-12/10/2017

for Research & Innovation

Fact sheet InDIRECT

Title:

Direct and indirect biorefinery technologies for conversion of organic side-streams into multiple marketable products

Acronym: InDIRECT

- Project partners:2 research partners; 7 industrial partners (5 SMEs)from 4 countries: Italy, France, The Netherlands, Belgium
- Funding scheme: Research & Innovation Action (H2020)

BBI.R10-2015-call on 'Innovative efficient biorefinery technologies' Total project costs: 2,089,670 euro Grant: 1,347,948 euro

Duration: 36 months (official start 1/11/2016)

Coordination: VITO (Belgium)

UNIVERSIT

DI PARM

Innovatiesteun

Scope InDIRECT project

Role of Indirect partners

General Objectives of InDIRECT

- Step 1: Homogenisation of the side-streams with insects
- Step 2: Fractionation of the insect biomass into crude extracts
- Step 3: Purification & conversion of compounds
- Development of direct <u>biorefinery processes</u> for a selection of underspent side streams/residues, for comparison with the indirect approach.
- <u>Optimisation of the biorefinery</u> processes to increase the **conversion efficiency** (product/ton biomass input) and maximise the **values** of the feedstock (euro/ton biomass input).
- Exploration of <u>application</u> areas of the <u>extracted compounds</u> for use in different sectors like feed, chemistry and food.
- Hereby taking into account the whole value chain and the associated economic, environmental, legal and practical aspects lab to pilot.

Needs & challenges to address

- 'Management of waste as a resource' (EU COM 2011/571)
- 'accelerating innovation and market uptake of bio-based products' (BBI vision paper)
 - Biorefineries important role BUT to be developed
 - Stable & economically interesting compounds needed
 - Consumers preferences change needed?
 - Availability of sufficient feedstock all-round
 - New value chains
 - 'A shorter time to market with ten new bio-based values chains by 2020' KPI2
- Alternative source for proteins
- Alternatives for antibiotics
- Reduce dependency of European economy on non-European countries

Specific objectives – indirect biorefinery

 $Lab \rightarrow Pilot$

Expected impact

InDIRECT WP-Structure

Time line InDIRECT

WPs	Year 1	Year 2	Year 3
WP1: Actualisation of the scene			
T1.1 – Side-streams			
T1.2 – legal aspects			
WP2: Direct Biorefinery of plant biomass			
T2.1 – Composition screening			
T2.2 – Biorefinery			
T2.3 – Product characterisation			
T2.4 – Preservation approaches			
WP3: Indirect biorefinery via insects			
T3.1 – Breeding of Black soldier fly			
T3.2 – Breeding of mealworm & co			
T3.3 – Biorefinery of insects			
WP4: Nutritional cobalancing & safety			
aspects			
T4.1 – Nutritional cobalancing			
T4.2 – Safety aspects			
WP5: Product formulations & application			
tests			
T5.1 – Feed application			
T5.2 – Chemical applications			
T5.3 – Others applications			
WP6: Upscaling & ETEA			
T6.1 – Upscaling biorefinery			
T6.2 – Larger scale application tests			
T6.3 – Techno-economic &			
environmental assessment			
WP7: Management, dissemination &			
exploitation & communication			
WP8 : Ethical aspects			

Side-streams considered- WP1

- Selection criteria:
 - Availability in EU (Tonnes/Y);
 - Seasonallity;
 - Composition & dry matter content (suitable as insect food)
 - Under-spent → lower cost-price
- Some selected side-streams

Apple pomace

Leek

Sugar beet leaves Sugar beet pulp

aves Rapeseed meal

DDGS

Others: Olive pomace, onions, carrots, corn gluten feed, ricebran, ... (fresh & fermented)

Direct biorefinery – wP2

Selection side-streams & characterization:

- Selection:
 - Leek (10 months/Y)
 - Sugar beet leaves (autumn only)
 - Alfalfa (references 4 cuts/Y);
- Characterisation:
 - Composition
 - Seasonal variability

Biorefinery

- Focus on proteins
- Maximal valoriation of biomass (at least 2 compounds targets from same biomass \rightarrow cascading biorefinery)

Preservation of side-streams before use

- Impact of cooling, freezing, freezedrying on quality of the side-stream
 - Monitoring in time
- Ensiling

Indirect biorefinery – wp3

Aim:

- 1) Recycling biomass side-streams by growth of insects
 - Suitable side-stream for supporting growth (plants & manure)?
 - Impact of side-stream on composition larvae?
- 2) Sustainable biorefinery of insects in proteins, fats and chitin
 - Cascading biorefinery
 - Preservation of functionality during biorefinery

Insect species considered – WP3

Black soldier fly larvae -> 'Wet' side-stream (30% DM)

- Chemical applications
- Feed applications
- Technical applications

Lesser mealworm larvae \rightarrow Dry side-stream

• Towards food & feed applications

(House cricket)

• Extrapolation case

Cobalancing feed & safety aspects - WP4

Objectives:

- (1) Cobalancing feed for insects:
 - Unravelling some principles behind the needs of insects related to feed and
 - applying this principles for cobalancing insect feed that is composed of side-streams.
 - increasing the conversion efficiency of the insects
 - tuning the composition of the insect towards specific applications;

(2) Evaluating aspects related to safety of insect-derived products

Mycotoxines, metals, pesticides, allergens, antibiotics, pathogens

Application tests & formulations – WP5

Objectives

1) To formulate the recycled compounds from WP2 & WP3 into:

2) To evaluate their applicability at small scale.

Upscaling – wP6

InDIRECT

Objective: To evaluate at a larger scale the different elements of the proposed new InDIRECT value chain for converting side streams into marketable products.

Upscaling of growth & promising biorefinery concepts

- Black soldier fly
- Lesser mealworm

Upscaling of product formulations and application tests

- Feed applications
- Chitin/chitosan and their corresponding formulations

Techno-economic and environmental analyses

Schematic representation of InDIRECT

Fractionation of BSF

 Goal: all insect fractions are valuable but not always in same ratios of the whole insect (e.g. too much fat; digestibility of chitin)

Conclusion: all chitin in one fraction

Insect fractionation

- Rendering = separation of fat from animal residues (e.g. fish oil) by using high T → protein hydrolysate fraction with nutritional value but no functionality
- Rendering in lab (boiling)

solubility curve of the pellet

Conclusion:

- Pure lipid fraction (96%)
- A lot of fat (46%) in the protein pellet
- Proteins are denatured: solubility of 10% at pH 2-10

Insect fractionation

- Organic solvents (e.g. hexane,...)
- Hexane is most efficient for fat recovery from dried insects, compared to petroleum ether, ethanol and acetone (data not shown)

Ethanol has large negative impact on protein solubility; hexane less impact (confirmed by SDS-PAGE)

Insect fractionation

Alternative procedure:

Protein distribution

Conclusion: Fat and proteins are not completely separated over subfractions A to D

Chitin and chitosan

Sources:

Industrial processing for chitin: - acid treatment \rightarrow CaCO₃

- alkaline extraction \rightarrow proteins
- decolorization \rightarrow pigments

Deacetylation

Depolymerisation

Chitosan

Chemical: 30-60% NaOH

Natural polymer of N-acetylglucosamine

Functional groups for (bio)chemistry

Chitosan oligomers

Chemical (e.g. HCl) or enzymatic

Properties:

- Solubility: chitin is insoluble; chitosan is soluble in acidic aqueous media
- Molecular weight
- Degree of (de)acetylation

Chitosan properties

- Biopolymer as building block: biodegradability
- Antimicrobial properties (Verlee et al. 2017):
 - type of microorganism (fungi, bacteria)
- degree of deacetylation \uparrow activity \uparrow : electrostatic interaction between $-\rm NH_3^+$ and negative cell surface
 - molecular weight: LMW (16-190 kDa) activity \uparrow
 - type of derivatisation
 - environmental effects: pH \downarrow and temperature \uparrow activity \uparrow
- Anticholesterol properties: binding of lipids
- Antioxidant properties
- Dietary fiber: not digestible by human

Chitosan market + applications

- 2015: chitin production 28.000 T \leftrightarrow demand 60.000 T
- Market growth: 2 billion USD (2016) to 4,2 billion USD (2021)
- Waste water treatment: flocculant, binding with metals, proteins,...
- Biopharmaceutics: wound healing, anti-cholesterol and weight loss products,...

• Agriculture: biostimulant, biopesticide, seed coating

- Food & feed: dietary fibre, replacement of antibiotics
- Materials: coating, packaging, fiber,...

InDIRECT consortium

Coordinator: leen.bastiaens@vito.be

www.BBI-indirect.eu

This project has received funding from the Bio Based Industries Joint Undertaking under the European Union's Horizon 2020 research and innovation programme under grant agreement No 720715.

Horizon 2020 European Union Funding for Research & Innovation