Biomechanical properties improved through dermal microRNA control

ADEBIOTECH - Romainville | March 13, 2018 Reymermier Corinne - Gaelle Saint-Auret

Adebiotech / EPIGEN 2018

Epigenetics

Age brings deregulation of protein production & skin sagging

Which miRNAs should be modulated to find back skin properties?

Let-7b is the dermal regulator for skin architecture improvement

Bio-informatic selection

- Of proteins whose mRNA have sequence homology with Let-7b miRNA sequence
- Of proteins favors for fibers organization

Protein Code	Name	Interacting partners	Biological functions
CHSY3	Chondroitin sulfate synthase 3	Collagen and elastic fibers	Sulfatation of chondroitin sulfate
XYLT1	Xylosyi transferase-1	Collagen and elastic fibers	GAG chain assembly
TGFBR2	TGFbeta2 receptor	Collagen fibers	Wound healing and tissue repair
FBN1	Fibrillin1	Elastic fibers and integrin	Skin elasticity
ITGB3	Integrin beta3	FBN1 and cell matrix	Cell shape and ECM deposition

- The two proteins CHSY3 and XYLT1 are responsible for chondroitin sulfate synthesis and sulfatation necessary for GAG chains assembly in proteoglycans such as decorin or biglycan involved in collagen and elastic fiber organization
- TGFBR2 knock-down results in a slowdown of wound contraction, reduced and delayed dermal collagen organization.
- FBN1 is a major glycoprotein component of microfibrils that forms a template for tropoelastin during elastic fibrillogenesis to ensure skin elasticity.
- ITGB3 participates in the integrin complex and is involved in cell matrix interactions through FBN1 binding, influencing cell shape and ECM deposition

Let-7b miRNA regulation could improve

FIBERS

Formation of collagen fiber

- Collagen 1
- Protein TGFBR2: favors collagen organization

Formation of elastic fiber

 Fibrilin 1 (protein FBN1): provides a scaffold for deposition of elastin

INTER-FIBER CEMENT

Inter-fiber cement – GAG (proteoglycan) that bring suppleness to the dermis network.

The GAGs are built buy "builder proteins": CHSY3
XYLT1

CELL-FIBER CONNECTOR

 ITGB3: integrin protein: Creates the links between cells and fibers for a strong dermis network.

Let-7b, a microRNA increased with aging and fibroblast quiescence (Nishino et al., 2008; Suh et al. 2012) could be a relevant dermal regulator for skin architecture improvement

4 13/03/2018

Proteins modulation for miRNA functional validation

We evidenced that Let-7b controls 5 key proteins involved in the dermal architecture

The epigenetic regulation for a skin rejuvenation

RNAge[™] is able to decrease the expression of the epigenetic skin regulator Let-7b in order to re-induce the production of proteins involved in 3D dermal architecture) are Dreations, **BASE**

We create chemistry

Fiber cohesion, dermal density & biomechanical properties

RNAge[™] at 0.02% showed an improvement of 14% of the Young's modulus vs untreated control: **increased density and structure**

We create chemistry

reations,

RNAge[™] is able to increase the dermal density through the fiber cohesion involved in 3D dermal architecture and increases the biomechanical properties of the reconstructed dermis

