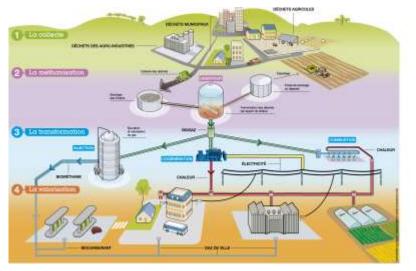


ARTOIS METHANISATION

Valorisation de coproduits par méthanisation

Maelenn Poitrenaud SEDE,


Plan

- La méthanisation
- Le site d'Artois Méthanisation : substrats traités (préparation) - procédé
- Les outils innovants de suivi mis en œuvre : pilote et laboratoire

Méthanisation : la double valorisation des co-produits organiques

La méthanisation : une technologie importante pour la transition énergétique

Projet de <u>loi sur la transition énergétique</u> <u>pour la croissance verte</u>:

- **32** % d'ENR en 2030
- réduction de **40** % des émissions de GES en 2030
- Economie circulaire

Méthanisation: valorisation des déchets / sous-produits / co-produits organiques et production de biogaz (ENR) et de fertilisants

Spécificité d'Artois Méthanisation : un site territorial

- Ancré dans le territoire
- Une grande diversité de substrats
- Synergie avec Artois Compost

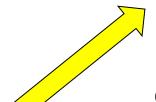
Les Chiffres clés

- Tonnages traités: 32 000 t/an
- Production de 5 000 t/an d'amendement utile au sol + 15 000 m3 de digestat liquide
- Production d'électricité verte : 1 MW/h électrique - 2 700 foyers alimentés en électricité
- Production d'eau chaude : 1 MW/h en substitution de plus de 60 000 L de fioul utilisé dans le traitement d'eau du site

Synthèse des Flux

Entrées (30 origines différentes) Boues urbaines

Boues industrielles



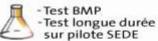
Biodéchets industriels

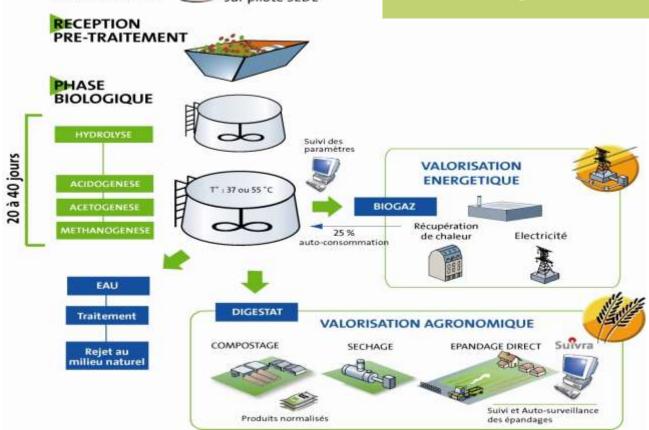
Electricité: 8000 Mwh

Chaleur: 8000 Mw

digestat deshydratés : 5 000 t + liquides 15 000 m3

Le challenge : Grande diversité des substrats traités





- Sous-produits et co-produits de l'agriculture : biomasse agricole...
- Déchets des industries agro-alimentaires en vrac : boues biologiques, graisses de flottation, ratés de fabrication, déchets carnés, graisses de restauration...
- Déchets des collectivités : tontes de pelouses, déchets de cantines collectives, déchets de stations d'épuration...
- Produits non commercialisables emballés, provenant de la grande distribution et des industries agro-alimentaires.

ANALYSE **DES DECHETS** RECEPTION

Principe de fonctionnement

Réception et préparation

- Substrats liquides
 - 4 cuves
 - 1 cuve pour substrat sensible (chauffée)
- Hall de réception
 - Grand hall de réception (H = 14 m)
 - Espace de manoeuvre des engins
 - Extraction d'air
 - Substrats solides,
 - 3 fosses pour substrats pâteux
 - **Déconditionnement**

Anticipation et contrôle

En amont du démarrage du site :

- Caractérisation des substrats (5 l)
- Réalisation de mélanges (MIX) et caractérisation,
- Tests en pilote 100l des MIX

Lors du démarrage de l'unité industrielle :

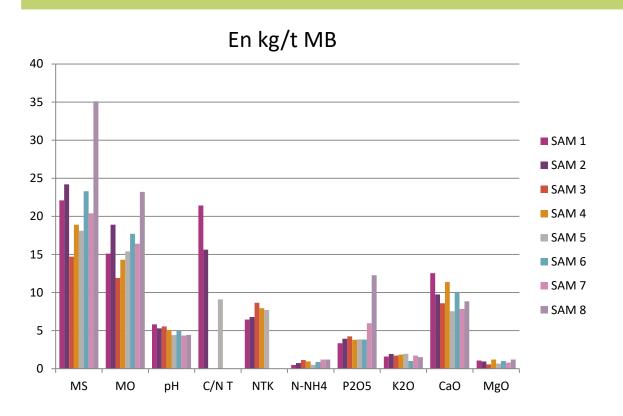
- Validation des performances observées en pilotes sur des mélanges proches de ceux testés en pilotes
- Essais en parallèle sur le pilote et l'unité pour valider la bonne reproductibilité du pilote

Les outils pilotes

Test BMP

Pilote 100l

 Alimentation: 2,5 à 3 l, tous les jours en semaine (WE en fonction des possibilités)


Paramètres opératoires : redox, pH et température

Production de biogaz : qualité (teneur en CH₄ et CO₂) et quantité

Caractérisation du déchet entrant : MS, MV, NTK, N-NH4+...., oligoéléments, éléments traces

Caractéristique du digestat : MS, MV, AGV, TAC, N-NH4+

Les MIX (soupes - SAM) testés en amont du démarrage

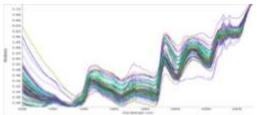
- SAM: 13 à 14 substrats

 Très grande variabilité des entrants, en lien avec les fluctuations du marché et à la saisonnalité de certains produits
- Le site doit pouvoir s'adapter à cette variabilité
- MO entre 64% et 85% (MS)
 Teneur en N élevée

Anticipation des performances - Essais pilote / AM

Application sur pilote : anticipation de la production de biogaz à l'échelle industrielle pour un nouvel intrant

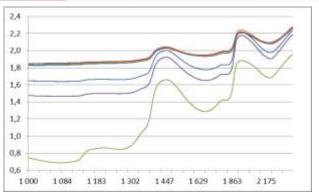
Les substrats expérimentés en cours d'exploitation



- Substrats agricoles : racines
 d'endives, écart de tri de pommes
 de terres ou légumes..
- Substrats IAA: acides gras, sucre, acides aminés
- Produits riches en N (protéines)
- Glycérine

Utilisation Infra-Rouge: Flash BMP®

Wavelength (λ)



Aujourd'hui : Analyses rapides du potentiel méthanogène in situ (Flash BMP®)

- Utilisation en routine chez SEDE, pour les besoins interne SEDE et notamment de pilotage du site :
 - valeur des gisements,
 - optimisation des mix (production de biogaz)
- Prestations externes possibles

Perspectives / Conclusion

Modèles	Parametres	Gamme du modèle	R ²
PLS	AGV t	0 - 33160 mgC2/L	0.68
Local PLS			0.78
PLS	MS	8.5 – 165 g/L	0.89
Local PLS			0.91
PLS	MV	4 – 159 g/L	0.88
Local PLS			0.93
PLS	Ammonium	0 – 6 gN/L	0.70
Local PLS			0.74
PLS	Alkalinité	0.17 – 27.5 gCaCO3/L	0.64
Local PLS			0.73

- Suivi des paramètres clés de la méthanisation par NIRS
 - Développement de modèles spécifiques
 - 。 Mise en œuvre sur site à venir
 - Plus de souplesse et de réactivité

- 4 années d'exploitation : REX important sur les paramètres biologiques mais pas que!
- Capitalisation pour les futurs projets

Merci pour votre attention

